import pandas as pd import seaborn as sns import matplotlib.pyplot as plt from scipy.stats import pearsonr if __name__ == '__main__': data = pd.read_csv('commit_analysis.csv') data['type'] = data['is_ml'].apply(lambda x: 'ML' if x else 'No ML') ylim = data['n_comments'].quantile(0.97) sns.catplot(x='type', y='n_comments', kind='box', data=data) \ .set(title='Commenti in base al tipo di issue') \ .set(xlabel='tipo') \ .set(ylabel='numero di commenti') \ .set(ylim=(0, ylim)) plt.tight_layout() plt.savefig('../src/figures/comments.pdf') plt.close() ylim = data['words_mean'].quantile(0.97) sns.catplot(x='type', y='words_mean', kind='box', data=data) \ .set(title='Parole medie in un commento') \ .set(xlabel='tipo') \ .set(ylabel='parole medie') \ .set(ylim=(0, ylim)) plt.tight_layout() plt.savefig('../src/figures/words.pdf')