import pandas as pd import seaborn as sns import matplotlib.pyplot as plt if __name__ == '__main__': data = pd.read_csv('commit_analysis.csv') data['type'] = data['is_ml'].apply(lambda x: 'ML' if x else 'No ML') ylim = data['file_entropy'].quantile(0.95) sns.catplot(x='type', y='file_entropy', kind='box', data=data) \ .set(title='Entropia del cambiamento calcolata sui file') \ .set(xlabel='tipo') \ .set(ylabel='entropia') \ .set(ylim=(0, ylim)) plt.tight_layout() plt.savefig('../src/figures/files-entropy.pdf') plt.close() ylim = data['line_entropy'].quantile(0.95) sns.catplot(x='type', y='line_entropy', kind='box', data=data) \ .set(title='Entropia del cambiamento calcolata sulle linee') \ .set(xlabel='tipo') \ .set(ylabel='entropia') \ .set(ylim=(0, ylim)) plt.tight_layout() plt.savefig('../src/figures/lines-entropy.pdf')