126 lines
3.6 KiB
Plaintext
Executable File
126 lines
3.6 KiB
Plaintext
Executable File
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 21,
|
|
"metadata": {
|
|
"collapsed": true
|
|
},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"model training 128\n",
|
|
"model evaluation 91\n",
|
|
"model deployment 75\n",
|
|
"data cleaning 59\n",
|
|
"model requirements 47\n",
|
|
"feature engineering 36\n",
|
|
"data collection 25\n",
|
|
"Name: classification, dtype: int64"
|
|
]
|
|
},
|
|
"execution_count": 21,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"import pandas as pd\n",
|
|
"\n",
|
|
"data = pd.read_csv('sampling_nb - sampling_nb.csv')\n",
|
|
"\n",
|
|
"data.drop(['second', 'url'], inplace=True, axis=1)\n",
|
|
"\n",
|
|
"data = data[~data['classification'].isin(['?', '', 'no pipeline', 'page not found', 'chinese', 'data labeling'])]\n",
|
|
"\n",
|
|
"data['classification'].value_counts()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 22,
|
|
"metadata": {
|
|
"pycharm": {
|
|
"name": "#%%\n"
|
|
}
|
|
},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"classification L2 class\n",
|
|
"data cleaning DP-DF 8\n",
|
|
" DP-LD 1\n",
|
|
" DP-O 17\n",
|
|
" DP-P 3\n",
|
|
" DP-R 13\n",
|
|
" DP-TE 9\n",
|
|
" DP-TM 2\n",
|
|
" DP-UT 6\n",
|
|
"data collection DC-DC 13\n",
|
|
" DC-DF 4\n",
|
|
" DC-F 3\n",
|
|
" DC-NS 1\n",
|
|
" DC-O 1\n",
|
|
" DC-S 3\n",
|
|
"feature engineering FE-BC 8\n",
|
|
" FE-CP 8\n",
|
|
" FE-H 10\n",
|
|
" FE-O 4\n",
|
|
" FE-T 6\n",
|
|
"model deployment MD-CI 44\n",
|
|
" MD-LR 6\n",
|
|
" MD-O 10\n",
|
|
" MD-SM 14\n",
|
|
" ME-O 1\n",
|
|
"model evaluation ME-AR 30\n",
|
|
" ME-C 29\n",
|
|
" ME-O 20\n",
|
|
" ME-RQ 8\n",
|
|
" ME-TP 4\n",
|
|
"model requirements MR-AM 18\n",
|
|
" MR-FR 25\n",
|
|
" MR-NM 2\n",
|
|
" MR-O 2\n",
|
|
"model training MT-BL 28\n",
|
|
" MT-GPU 19\n",
|
|
" MT-O 49\n",
|
|
" MT-RU 10\n",
|
|
" MT-TT 16\n",
|
|
" loss 6\n",
|
|
"dtype: int64"
|
|
]
|
|
},
|
|
"execution_count": 22,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"data.groupby(['classification', 'L2 class']).size()"
|
|
]
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "Python 3",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.9.5"
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 1
|
|
} |