In questa prima analisi si è voluto andare a vedere se esiste una differenza tra cambiamenti generici e cambiamenti legati al \ac{ML} rispetto ai file e le directories toccati da questi cambiamenti.
Per poter svolgere questa analisi è stato necessario individuare il numero totale di file modificati per *fix* generici e per i *fix* specifici del \acl{ML}.
Per fare ciò, i commit sono stati raggruppati rispetto al progetto e al tipo di cambiamento (\ac{ML}, no \ac{ML}).
Per ogni ogni istanza di questo raggruppamento si è eseguito l'union set dei files modificati.
Come output di questa fase, per ogni progetto, si è ottenuto:
- l'insieme dei file modificati per *fix* di \ac{ML}
- l'insieme dei file modificati per fix generici
Infine eseguendo l'union set tra questi due insiemi si è ottenere l'insieme totale dei files modificati durante i *fix*.
In questo modo è stato possibile andare a valutare la percentuale di files modificati in relazione al tipo di cambiamento.
Attraverso la funzione di libreria Python `os.path.dirname` sono stati ottenuti i tre insiemi sopra citati anche per quanto riguarda le directories.
Dalla @fig:files-directories si può notare che i cambiamenti generici vanno ad impattare su una superficie maggiore del sistema, sia che l'analisi sia svolta al livello di files che di directories.
Un'ulteriore aspetto interessante riguarda la varianza delle distribuzioni, infatti, indipendentemente dalla granularità dell'analisi, il dato riguardante i cambiamenti di \acl{ML} è caratterizzato da una maggiore varianza.
![Percentuale di files e directories modificate in base al tipo di cambiamento](figures/files-and-directories.pdf){#fig:files-directories width=80%}
Un'ulteriore analisi rispetto all'architettura dei progetti è stata svolta mediante gli import.
Attraverso uno script sono stati estratti, per ogni file, gli import utilizzati all'interno del file stesso.
A questo punto sono stati individuati i files di \acl{ML} in base agli import utilizzati.
La classificazione è avvenuta utilizzando due livelli di severità; in un primo caso sono stati considerati come import di \acl{ML} solo delle librerie strettamente di \ac{ML} come ad esempio `keras`, `TernsorFlow`, `PyTorch`, ecc.
Mentre in un secondo caso sono state incluse anche librerie utilizzate spesso in ambito \ac{ML}, ma anche in altri ambiti, come ad esempio `pandas`, `numpy` e `scipy`.
![Percentuale di file che utilizzano librerie di ML](figures/imports.pdf){#fig:imports width=70%}
Dal boxplot riportato in @fig:imports si può notare che, indipendentemente dalla severità dell'analisi, la percentuale di file che utilizzano librerie di \acl{ML} è caratterizzata da una forte varianza.
Ciò ci indica che i progetti inclusi all'interno dello studio sono vari tra di loro.
Inoltre, considerando l'analisi *strict*, è possibile osservare come solo un $25\%$ dei progetti abbia una percentuale di files di \ac{ML} superiore al $45\%$.
Come illustrato nella @sec:classificazione-commit per poter determinare la natura di un *issue fix* si è fatto ricorso alla classificazione delle *issues* ad esso associate.
La maggior parte delle *issues* è stata classificata automaticamente, ma è stato comunque necessario classificarne una porzione in modo manuale per poter avere un train/test set.
Come detto precedentemente, nel caso delle *issues* classificate a mano, oltre all'individuazione della tipologia (\ac{ML}, non \ac{ML}) è stata individuata anche la fase in cui il problema si palesava (si veda @sec:classificazione-issues).
Questo dato aggiuntivo presente su alcune issues è stato *proiettato* anche sulla classificazione dei commit di *fix* per andare a valutare come questi sono distribuiti sulle varie fasi.
Rispetto alla distribuzione sulle issues (@fig:labeling-phases) è possibile notare la scomparsa della fase *data collection*, inoltre è evidente anche la riduzione delle occorrenze di *model training* e una crescita d'importanza per quanto riguarda le fasi di *model requirements* e *model deployment*.
Sfortunatamente i dati disponibili per questa analisi sono molto limitati (è stato possibile ricavare la fase solo per quaranta *fix*), per cui non è stato possibile effettuare delle analisi più approfondite.
L'analisi è stata svolta sia a livello di file, sia a livello di linee, quindi per ogni commit del dataset è stato necessario individuare sia il numero di file che hanno subito delle modifiche, sia il numero di linee alterate, considerando in questo modo sia le aggiunte che le rimozioni.
Inoltre per poter valutare l'entità del cambiamento è stato necessario conoscere anche il numero totale di file e di linee di ogni progetto.
Questi valori sono stati calcolati attraverso la storia `git` del branch `master`[^branch-master].
Per ogni commit sono stati individuati i file aggiunti ($+1$) e rimossi ($-1$) in modo tale da poter calcolare il delta-cambiamento del commit.
Eseguendo la somma di questo delta su tutti i commit si è ottenuto il numero totale di file del progetto.
In modo analogo si è proceduto anche per quanto riguarda le linee.
[^branch-master]: Oltre al branch `master` è stato considerato anche il branch `main` diventato molto comune dopo le proteste del movimento Black Lives Matter e il branch `master-V2` unico branch utilizzato da un progetto.
Una volta note queste informazioni preliminari è stato possibile calcolare l'entropia dei *fix* che è stata riportata nei boxplot[^boxplot-entropy] in @fig:entropy.
Dal boxplot in @fig:files-entropy è possibile notare una distribuzione equivalente per le due tipologie di fix.
Una situazione analoga si riscontra anche nell'analisi sulle linee (@fig:lines-entropy) anche se in questo caso è possibile notare che i valori di entropia associati ai fix di \ac{ML} sono shiftati leggermente verso l'alto.
I risultati ottenuti sono stati riportati nel boxplot[^boxplot-discussion] in @fig:discussion-comments.
In questo caso si evince una differenza molto più marcata tra le due distribuzioni.
In particolare è possibile notare che le *issue fix* di \ac{ML} presentano una maggiore discussione e anche una maggiore varianza.
Se consideriamo la differenza interquartile, in modo da escludere completamente eventuali outlier, possiamo osservare che nei *fix* generici questa varia tra zero e uno.
Ciò vuol dire che il $50\%$ interno delle issues o non presenta commenti o ne presenta uno solo.
Mentre la differenza interquartile dei *fix* di \acl{ML} è compreso tra uno e cinque quindi nel $50\%$ interno tutte le issues hanno almeno un commento di risposta.
A questo punto si è cercato di capire se al maggior numero di commenti è associata effettivamente una maggiore quantità di informazioni scambiate.
Per svolgere questa analisi si è partiti dal presupposto che la quantità di informazioni scambiate sia proporzionale al numero di parole utilizzate nel commento.
Per valutare questo parametro è stato necessario estrarre da ogni *issue* la data di apertura e di chiusura e calcolare i giorni che intercorrono tra queste.
Questo vuol dire che il $50\%$ basso dei *bug* di \ac{ML} viene comunque risolto in tempi brevi (due giorni circa), mentre l'altro $50\%$ può richiedere una quantità di tempo decisamente superiore.
Nel caso di un problema generico, questo, viene considerato come *anomalo* se per essere risolto necessita di un tempo superiore ai cinque giorni.
Mentre nel caso dei *fix* di \acl{ML} per essere considerato outlier un *issue*, necessaria di un *time-to-fix* superiore ai trentacinque giorni.
Il maggior tempo necessario ad attuare la correzione ci indica che i *bug* di \ac{ML} sono più difficili di quelli generici il che spiegherebbe anche il dato emerso dalla sezione precedente, in quanto per individuare la fonte del problema è necessaria una discussione più approfondita.